124 research outputs found

    A local limit theorem for triple connections in subcritical Bernoulli percolation

    Full text link
    We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on Zd,d2\mathbb{Z}^{d},\,d\geq2 in the limit where their distances tend to infinity.Comment: 31 page

    On the Ornstein-Zernike behaviour for the Bernoulli bond percolation on Zd,d3,\mathbb{Z}^{d},d\geq3, in the supercitical regime

    Full text link
    We prove Ornstein-Zernike behaviour in every direction for finite connection functions of bond percolation on Zd\mathbb{Z}^{d} for d3d\geq3 when p,p, the probability of occupation of a bond, is sufficiently close to 1.1. Moreover, we prove that equi-decay surfaces are locally analytic, strictly convex, with positive Gaussian curvature.Comment: 18 pages, published versio

    Rigorous Non-Perturbative Ornstein-Zernike Theory for Ising Ferromagnets

    Full text link
    We rigorously derive the Ornstein-Zernike asymptotics of the pair-correlation functions for finite-range Ising ferromagnets in any dimensions and at any temperature above critical

    Ornstein-Zernike Theory for the finite range Ising models above T_c

    Full text link
    We derive precise Ornstein-Zernike asymptotic formula for the decay of the two-point function in the general context of finite range Ising type models on Z^d. The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman, Barsky and Fernandez, goes through in the whole of the high temperature region T > T_c. As a byproduct we obtain that for every T > T_c, the inverse correlation length is an analytic and strictly convex function of direction.Comment: 36 pages, 5 figure

    Random path representation and sharp correlations asymptotics at high-temperatures

    Full text link
    We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in the Ising case, to arbitrary odd-odd correlation functions. We discuss the fluctuations of connection paths (invariance principle), and relate the variance of the limiting process to the geometry of the equidecay profiles. Finally, we explain the relation between these results from Statistical Mechanics and their counterparts in Quantum Field Theory

    A Finite-Volume Version of Aizenman-Higuchi Theorem for the 2d Ising Model

    Full text link
    In the late 1970s, in two celebrated papers, Aizenman and Higuchi independently established that all infinite-volume Gibbs measures of the two-dimensional ferromagnetic nearest-neighbor Ising model are convex combinations of the two pure phases. We present here a new approach to this result, with a number of advantages: (i) We obtain an optimal finite-volume, quantitative analogue (implying the classical claim); (ii) the scheme of our proof seems more natural and provides a better picture of the underlying phenomenon; (iii) this new approach might be applicable to systems for which the classical method fails.Comment: A couple of typos corrected. To appear in Probab. Theory Relat. Field

    Low density expansion for Lyapunov exponents

    Full text link
    In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory

    Expanding direction of the period doubling operator

    Full text link
    We prove that the period doubling operator has an expanding direction at the fixed point. We use the induced operator, a ``Perron-Frobenius type operator'', to study the linearization of the period doubling operator at its fixed point. We then use a sequence of linear operators with finite ranks to study this induced operator. The proof is constructive. One can calculate the expanding direction and the rate of expansion of the period doubling operator at the fixed point
    corecore